Visual Areas Exert Feedforward and Feedback Influences through Distinct Frequency Channels

Bastos et al., 2015

What is Granger Causality?

Optional material

Granger Causality

• Clive Granger

- econometrician
- Nobel Prize winner
- non-linear time series
- "based on the simple idea that causes both precede and help predict their effects." (Anil et al., 2015)

https://en.wikipedia.org/wiki/Clive_Granger

\land	ΔΔΡΙ	5 1	5 1h	1D	1M	1D	-		0		•			КЯ	Symbol	Last	Chng (%)
×												QD	GD	КЛ	AAPL •	224.37	-4.87 (-2.12%)
\square^{\checkmark}		.[1.]*	\$	111	۵۵	•	1	4							BABA •	176.34	-4.96 (-2.74%)
Т	Apple Inc	, Unite	d State	es, M,	NASD	AQ -	0				• Mai	rket	sed - 350	0.00	TWTR •	24.69	+0.74 (+3.09%)
- 16-9															IBM •	94.77	-0.62 (-0.65%)
8 °0												Λ	- 275	5.00	BAC •	18.08	-1.59 (-8.08%)
o ↓ o	- 250.00														KO •	37.56	-0.74 (-1.93%)
÷	-224.37															31.45	-1.29 (-3.94%)
E¢¢											$\sqrt{2}$		- 200	0.00	FB •	148.10	-1.63 (-1.09%)
(+)	- 175.00														F۰	4.01	-0.32 (-7.39%)
~	- 150.00														GM ∘	17.60	-0.54 (-2.98%)
ſ	- 125.00 - 100.00														GOOGL •	1054.13	-14.08 (-1.32%)
ø.															HPQ •	13.70	-0.25 (-1.79%)
Ē	Investin	acom											- 75.	00	AA •	5.67	+0.19 (+3.47%)
		9.00											- 50.	00	JPM ∘	79.03	-4.47 (-5.35%)
	Volume (20) -		100.423M	635.38	34M								- 3B		MCD •	137.10	-11.39 (-7.67%)
Ô	i lina			-									- 2B		MSFT •	135.98	-1.37 (-1.00%)
					hi			11		the second	h h		- 635	5.384M).423M	SBUX •	56.55	-1.48 (-2.55%)
Ē	2013		2015			20	17			2019		Feb					
	10y 3y	1y 1m	7d	1d	Go to			20:0	04:15 (U	TC-4)	%	log	auto	¢			

https://www.investing.com/charts/stocks-charts

Granger "Prediction"

- Cohen, 2014
- Granger causality does not imply nor require causality.
- "G-causality says that a variable X "G-causes" another variable Y if the past of X contains information that helps predict the future of Y, over and above the information already in the past of Y itself (and in the past of other "conditioning" variables Z)." (Anil et al., 2015)
- G-causality vs:
 - correlation or coherence

Application in Neuroscience

Autoregressive models

• Univariate autoregressive models

$$\mathbf{X}_{t} = a_1 \mathbf{X}_{t-1} + a_2 \mathbf{X}_{t-2} + \dots + a_n \mathbf{X}_{t-n} + e_{tx}$$

$$\mathbf{Y}_{t} = b_1 \mathbf{Y}_{t-1} + b_2 \mathbf{Y}_{t-2} + \dots + b_n \mathbf{Y}_{t-n} + e_{ty}$$

• Bivariate autoregressive models

$$\mathbf{X}_t = a_1 \mathbf{X}_{t-1} + \dots + b_1 \mathbf{Y}_{t-1} + \dots + \epsilon_{txy}$$

Autoregressive models

• Univariate autoregressive models

$$\mathbf{X}_t = \sum_{n=1}^k a_n \mathbf{X}_{t-n} + e_t$$

• Bivariate autoregressive models

$$\mathbf{X}_{t} = \sum_{n=1}^{k} a_{n} \mathbf{X}_{t-n} + \sum_{n=1}^{k} b_{n} \mathbf{y}_{t-n} + \epsilon_{t}$$

Prediction errors

Granger Parameters: time window

Granger Parameters: time window

Mike X Cohen, <u>https://www.youtube.com/watch?v=XqsSB_vpHLs</u>

Granger Parameters: model order

$$\mathbf{X}_{t} = \sum_{n=1}^{k} a_{n} \mathbf{X}_{t-n} + \sum_{n=1}^{k} b_{n} \mathbf{y}_{t-n} + \epsilon_{t}$$

Spectral Granger Causality

Jenison, 2014, PLoS One

Visual Areas Exert Feedforward and Feedback Influences through Distinct Frequency Channels

Bastos et al., 2015

https://psychedelicreview.com/altered-oscillations-the-modulatory-effect-of-dmt-on-brain-waves/

Introduction: What we know?

- "Many aspects of cognitive performance can only be explained through the concept of feedback influences."
- Behavioral studies
- Neurophysiological studies

• "Recent studies have documented a **neurophysiological asymmetry** between the layers of visual cortex."

Neurophysiological asymmetry

- **supragranular layers** → local gamma-band synchronization
- **infragranular layers** → local alpha/beta-band synchronization
- Local rhythmic synchronization can lead to **interareal synchronization**
 - possible mechanism of effective interareal interaction

• Hypothesis:

 "interareal synchronization in the gamma-frequency band might mediate feedforward influences, and interareal synchronization in the beta-frequency band might mediate feedback influence"

Experimental Procedure

- electrocorticography (ECoG) grids
 - left hemispheres of two macaque monkeys
 - local field potentials (LFPs)
- visuospatial attention task

The brain of monkey 1 after placement of the ECoG grid.

Electrocorticography (ECoG) grids

Rendering of the brain of monkey 1 based on structural MRI scans. *Parcellation of ECoG-covered regions into cortical areas.*

Selective visual attention task

1) Interareal Synchronization Occurs in Narrow Theta, Beta, and Gamma Frequency Bands

- All interareal coherence spectra were averaged, and peaks were found using an automatic peak-detecting algorithm
- Between pairs of sites from different areas, interareal synchronization is quantified by the coherence metric.

Frequency-specific directed influences are determined by calculating Granger-causal (GC) influences between all possible interareal pairs of sites

• "The spectrum of GC influences of site 1 onto site 2 quantifies, per frequency, the variance in site 2 that is not explained by the past of site 2, but by the past of site 1."

Granger-causal (GC) influences

The GC <mark>feedforward</mark> influence was stronger than the feedback influence in the <mark>theta and gamma-bands</mark>, whereas the <mark>feedback</mark> influence was stronger in the beta-band

2) Asymmetries in Granger-Causal Influences Relate to Anatomical Asymmetries

- In the paper, GC influences are related to anatomical projections, specifically to a metric of their feedforward or feedback character.
- What we know already: (Felleman and Van Essen, 1991)
 - **Feedforward** connections originate preferentially in **supragranular layers**.
 - **Feedback** connections originate preferentially in the **infragranular layers**.
- Which tools we have:
 - Neuronal tracing

body (anterograde) or towards it (retrograde). https://blog.addgene.org/using-aav-for-neuronal-tracing

Retrograde tracer is injected into a target area and labels neurons in several source areas projecting to the target area

SLN are related to the corresponding GC influence (GCIs)

- DAI:
 - The directed influence asymmetry index:

[GCI(source->target) – GCI(target->source)]/ [GCI(source->target) + GCI(target->source)]

• DAI values are correlated with the corresponding SLN values, across all area pairs.

*Spearman rank correlation between DAI values and SLN values

3) Asymmetries in Granger-Causal Influences Define a Functional Hierarchy

• "The correlations between the anatomical SLN metric and the functional DAI metric suggest that it might be possible to construct a hierarchy of visual cortical areas **from DAI values alone**."

• Firstly:

- the post-cue period was used
- o combined all evidence available in the DAIs across the frequency spectrum
 - by averaging the DAIs of the theta-, beta-, and gamma-frequency bands
- This **multifrequency band DAI (mDAI)** was strongly correlated with the SLN <u>across all</u> <u>pairs of areas</u>

Correlation between SLN and the DAI combined across theta-, beta-, and gamma-bands as specified on the y axis. *Spearman rank correlation is used

• Secondly:

- The mDAI values, which can range from -1 to 1, were **rescaled** into a range from -5 to 5.
- **Each area** is considered as target area
- The rescaled mDAI values of all source areas are **shifted** such that the smallest value was one (1 to 10).
- The resulting functional-hierarchical levels are **averaged** across all target areas and across the two monkeys.

The existence of a GC-influence-based functional hierarchy. *This functional hierarchy correlates strongly with the most recent anatomical hierarchy (Markov et al., 2014b) of visual cortex (R = 0.93, p = 0.002).

"Revealing immunity to manipulations"

4) Functional Hierarchy Changes Dynamically with Behavioral Context

• The functional hierarchy changes **across different task periods**.

• The Functional Hierarchy Is Dynamic:

- It is not fixed as are anatomy-based hierarchies.
- The most recent anatomy-based hierarchy (Markov et al., 2014b) shows:
 - an **R** = **0.93** correlation to the **post-cue** functional hierarchy
 - an R = 0.91 correlation to the pre-cue functional hierarchy
 - and **no** significant correlation to the **pre-stimulus** functional hierarchy
- Though anatomical connections in the two directions are present at all times.

5) Global Consistency of the Functional and Anatomical Hierarchies

• Hierarchical ranking of the recorded visual areas according to the most recent **anatomical hierarchical model** (Markov et al., 2014b).

This hierarchical model specifies each interareal influence as either bottom-up or top-down.

 Each target area's GC influences to all other areas were sorted into bottom up and top-down influences.

Spectra were averaged across monkeys after aligning frequency peaks.

6) Attention Enhances Top-Down and Bottom-up Influences in a Spatially Specific Manner

- Top-down control is expected to be enhanced by selective attention.
- Bressler and Richter, 2014; Lee et al., 2013:
 - When selective attention was directed to the <u>contralateral as compared to the ipsilateral</u> stimulus, **top-down beta-band** GC influences were enhanced.
- This enhanced top-down beta-band influence might lead to enhanced bottom-up gamma-band influence:
 - when selective attention was directed to the <u>contralateral as compared to the ipsilateral</u> stimulus, **bottom-up gamma-band** GC influences were enhanced in the grand average

Results

- 1. Interareal Synchronization Occurs in Narrow Theta, Beta, and Gamma Frequency Bands
- 2. Asymmetries in Granger-Causal Influences Relate to Anatomical Asymmetries
- 3. Asymmetries in Granger-Causal Influences Define a Functional Hierarchy
- 4. Functional Hierarchy Changes Dynamically with Behavioral Context
- 5. Global Consistency of the Functional and Anatomical Hierarchies
- 6. Attention Enhances Top-Down and Bottom-up Influences in a Spatially Specific Manner

Discussion

- Asymmetries in directed influences are likely related to the **laminar pattern** of interareal anatomical projections.
- Feedforward and feedback interareal influences need to fulfill **different requirements**, which might be met by synchronization in different frequency bands.
- Inputs may have differential effects at their target structure uniquely due to the rhythm through which they have been transferred:
 - functional tagging

Discussion

- Functional hierarchy exhibits dynamic changes. This might be due to differential activation of superficial and deep layers.
 - **predictive coding** (Bastos et al., 2012):
 - The statistical regularities of sensory inputs are learned by shaping feedforward connectivity
 - evidences from previous studies:
 - von Stein et al., 2000
 - Arnal et al., 2011
 - In these studies, the response to the predicted stimulus entailed a lower and the response to the unpredicted stimulus a higher frequency band.
- The operationalization of feedforward versus feedback signaling through cognitive tasks remains a **challenge**:
 - Enhanced bottom-up signaling can be a consequence of enhanced top-down signaling

Discussion

- The definition of the functional hierarchy through the assessment of interareal GC influences might be **transferable to human experiments**.
 - "Intracranial LFP recordings (Tallon-Baudry et al., 2001) and/or MEG recordings together with source analysis (Siegel et al., 2008) might offer an opportunity to arrive at a hierarchical model of the human brain, including uniquely human brain areas, by capitalizing on the functional hierarchy presented here."

References

- Bastos, A. M., Vezoli, J., Bosman, C. A., Schoffelen, J. M., Oostenveld, R., Dowdall, J. R., ... & Fries, P. (2015). Visual areas exert feedforward and feedback influences through distinct frequency channels. Neuron, 85(2), 390-401.
- Seth, A. K., Barrett, A. B., & Barnett, L. (2015). Granger causality analysis in neuroscience and neuroimaging. Journal of Neuroscience, 35(8), 3293-3297.
- Mike X Cohen, https://www.youtube.com/watch?v=XqsSB_vpHLs

Thank you for listening!

orhan.soyuhos@studenti.unitn.it

